Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Genes (Basel) ; 13(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1715230

ABSTRACT

Left ventricular noncompaction (LVNC) is a highly heterogeneous primary disorder of the myocardium. Its clinical features and genetic spectrum strongly overlap with other types of primary cardiomyopathies, in particular, hypertrophic cardiomyopathy. Study and the accumulation of genotype-phenotype correlations are the way to improve the precision of our diagnostics. We present a familial case of LVNC with arrhythmic and thrombotic complications, myocardial fibrosis and heart failure, cosegregating with the splicing variant in the FHOD3 gene. This is the first description of FHOD3-dependent LVNC to our knowledge. We also revise the assumed mechanism of pathogenesis in the case of FHOD3 splicing alterations.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Hypertrophic , Heart Defects, Congenital , Isolated Noncompaction of the Ventricular Myocardium , Cardiomyopathies/genetics , Cardiomyopathy, Hypertrophic/complications , Formins , Heart Defects, Congenital/pathology , Humans , Isolated Noncompaction of the Ventricular Myocardium/diagnostic imaging , Isolated Noncompaction of the Ventricular Myocardium/genetics , Myocardium
2.
Sci Rep ; 11(1): 8449, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1193601

ABSTRACT

Although most patients recover from COVID-19, it has been linked to cardiac, pulmonary, and neurologic complications. Despite not having formal criteria for its diagnosis, COVID-19 associated cardiomyopathy has been observed in several studies through biomarkers and imaging. This study aims to estimate the proportion of COVID-19 patients with cardiac abnormalities and to determine the association between the cardiac abnormalities in COVID-19 patients and disease severity and mortality. Observational studies published from December 1, 2019 to September 30, 2020 were obtained from electronic databases (PubMed, Embase, Cochrane Library, CNKI) and preprint servers (medRxiv, bioRxiv, ChinaXiv). Studies that have data on prevalence were included in the calculation of the pooled prevalence, while studies with comparison group were included in the calculation of the odds ratio. If multiple tests were done in the same study yielding different prevalence values, the largest one was used as the measure of prevalence of that particular study. Metafor using R software package version 4.0.2 was used for the meta-analysis. A total of 400 records were retrieved from database search, with 24 articles included in the final analysis. Pooled prevalence of cardiac abnormalities in 20 studies was calculated to be 0.31 [95% Confidence Intervals (CI) of (0.23; 0.41)], with statistically significant heterogeneity (percentage of variation or I-squared statistic I2 = 97%, p < 0.01). Pooled analysis of 19 studies showed an overall odds ratio (OR) of 6.87 [95%-CI (3.92; 12.05)] for cardiac abnormalities associated with disease severity and mortality, with statistically significant heterogeneity (I2 = 85%, between-study variance or tau-squared statistic τ2 = 1.1485, p < 0.01). Due to the high uncertainty in the pooled prevalence of cardiac abnormalities and the unquantifiable magnitude of risk (although an increased risk is certain) for severity or mortality among COVID-19 patients, much more long-term prognostic studies are needed to check for the long-term complications of COVID-19 and formalize definitive criteria of "COVID-19 associated cardiomyopathy".


Subject(s)
COVID-19/pathology , Heart Defects, Congenital/pathology , COVID-19/complications , COVID-19/virology , Heart Defects, Congenital/complications , Heart Defects, Congenital/epidemiology , Hospitalization , Humans , Odds Ratio , Prevalence , Prognosis , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL